Philadelphia University

Faculty of Engineering

Course Title:Control Systems – sec. 1Date: 1/5/2019Course No:(610414+640344)Time Allowed: 5

Course No: (610414+640344)	Time Allowed: 50 minutes
Lecturer: Dr. Mohammed Mahdi	No. of Pages: 1

Objectives: This question is about finding time response.

Given the general transfer function of first order control system $\frac{Y(s)}{R(s)} = \frac{k}{\tau s + 1}$. If **R(s) is unit**

step input, it is required to find y(t), then calculate y(0), $y(\tau)$ and $y(\infty)$.

Question 2:

R

Question 1:

Objectives: This question is about Mason's Gain formula and absolute stability.

A) Given the following signal flow graph: -

 G_1G_4

 G_3

 G_2

It is required to find its closed loop transfer function using Mason's Gain formula. (30 Marks)

B) Given the closed loop transfer function $\frac{Y(s)}{R(s)} = \frac{K}{s(s^2+s+1)(s+2)+K}$, it is required to

find the range of gain K for stability using Routh-Herwitz criterion. (30 Marks)

Dept. of Electrical Engineering Second Exam, Second Semester: 2018/2019

Student Name:

Student Number:

(40 Marks)

(60 Marks)

С